Abstract

ZrTe5 has unique features of a temperature-dependent topological electronic structure and anisotropic crystal structure and has obtained intensive attention from the thermoelectric community. This work revealed that the sintered polycrystalline bulk ZrTe5 possesses both (020) and (041) preferred orientations. The transport properties of polycrystalline bulk p-type ZrTe5 exhibits an obvious anisotropic characteristic, that is, the room-temperature resistivity and thermal conductivity, possessing anisotropy ratios of 0.71 and 1.49 perpendicular and parallel to the pressing direction, respectively. The polycrystalline ZrTe5 obtained higher ZT values in the direction perpendicular to the pressing direction, as compared to that in the other direction. The highest ZT value of 0.11 is achieved at 350 K. Depending on the temperature-dependent topological electronic structure, the electronic transport of p-type ZrTe5 is dominated by high-mobility electrons from linear bands and low-mobility holes from the valence band, which, however, are merely influenced by valence band holes at around room temperature. Furthermore, external magnetic fields are detrimental to thermoelectric properties of our ZrTe5, mainly arising from the more prominent negative effects of electrons under fields. This research is instructive to understand the transport features of ZrTe5 and paves the way for further optimizing their ZTs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.