Abstract

The strong anisotropic thermal expansion behavior found for cordierite ((Mg2Al4Si5O15), β-eucryptite (LiAlSiO4) and NZP (NaZr2P3O12) is qualitatively rationalized using distance least squares (DLS) modeling. In this approach, the thermal expansion is driven by the ionic bonds of Mg2+, Li+ or Na+. Due to constraints imposed by shared polyhedra edges or faces, thermal expansion of the ionic bonds expands the lattice in only one or two dimensions. Due to the connectivity in these structures, this expansion in some directions causes contraction in the other directions. The thermal expansion of β-eucryptite was determined from powder neutron diffraction data over the temperature range 10–809 K. This revealed that the volume thermal expansion of β-eucryptite becomes substantially more negative below room temperature than it is above room temperature. The structure was refined by the Rietveld method from data collected at 12 different temperatures. DLS modeling studies suggest that Li–O bond expansion plus movement of Li from tetrahedral to octahedral sites can explain the thermal expansion behavior above room temperature. However, such an approach cannot explain the more pronounced low-temperature negative thermal expansion, which is most likely attributable to rocking motions of AlO4 and SiO4 tetrahedra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.