Abstract

With the increased environmental issues, advanced high-performance and multifunctional polymeric materials derived from biomass have tremendous attention due to the great potential to replace their traditional petroleum-based counterparts. In this work, a series of lignin graft copolymers, lignin-graft-poly(n-butyl acrylate-co-acrylic acid) (Lig-g-P(BA-co-AA)), were rationally prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization. These lignin-based copolymers demonstrate good thermal stability and tunable glass transition temperature (Tg) values. The mechanical performance, including tensile strength, extensibility, Young's modulus, and toughness can be facilely adjusted by the BA/AA feed ratio and lignin content during polymerization. Owing to the extraordinary photothermal conversion ability of lignin, the Lig-B550 copolymer, containing 11.8 wt% lignin content, shows excellent stimulus-healing behavior within 1 min with a 97.1 % healing efficiency under near-infrared (NIR) laser irradiation. Moreover, the Lig-g-P(BA-co-AA) copolymers exhibit remarkable adhesion property, broadening their potential applications in the adhesive area. This grafting strategy is versatile and efficient, conferring the resultant lignin-based composite elastomers with dramatically enhanced mechanical properties and unprecedented photothermal behavior, which can inspire the further development of strong lignin-based sustainable elastomers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call