Abstract

AbstractNacre is a classic model, providing an inspiration for fabricating high‐performance bulk nanocomposites with the two‐dimensional platelets. However, the “brick” of nacre, aragonite platelet, is an ideal building block for making high‐performance bulk nanocomposites. Herein, we demonstrated a strong and tough conductive nacre through reassembling aragonite platelets with bridged by MXene nanosheets and hydrogen bonding, not only providing high mechanical properties but also excellent electrical conductivity. The flexural strength and fracture toughness of the obtained conductive nacre reach ~282 MPa and ~6.3 MPa m1/2, which is 1.6 and 1.6 times higher than that of natural nacre, respectively. These properties are attributed to densification and high orientation degree of the conductive nacre, which is effectively induced by the combined interactions of hydrogen bonding and MXene nanosheets bridging. The crack propagations in conductive nacre are effectively inhibited through crack deflection with hydrogen bonding, and MXene nanosheets bridging between aragonite platelets. In addition, our conductive nacre also provides a self‐monitoring function for structural damage and offers exceptional electromagnetic interference shielding performance. Our strategy of reassembling the aragonite platelets exfoliated from waste nacre into high‐performance artificial nacre, provides an avenue for fabricating high‐performance bulk nanocomposites through the sustainable reutilization of shell resources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.