Abstract
AbstractHierarchical assembly of polysaccharides into nanofiber is at the core of generating advanced biomimetic nanomaterials. However, the artificial synthesis of supramolecular nanofiber from polysaccharides remains an open challenge due to their complicated structure, irregular, and strong interaction. Herein, by mimicking the assembly of natural macromolecules in an out‐of‐equilibrium state, supramolecular nanofiber is successfully fabricated from natural polysaccharides through regular and strong interaction, and a high‐energy and oriented flow field. The high energy of ultrasound can surmount the energy landscape of dynamically stable electrostatic interaction among polysaccharides, while the acoustic‐oriented streaming overcomes the disordered arrangement of macromolecules, thus inducing the orderly arrangement of polysaccharide chains to form kinetically stable nanofibers. The kinetically trapped assembly and the resulting structural evolution can be monitored by scattering and imaging experiments, while the microscopic mechanism can be confirmed by theoretical simulation. Mechanically strong, water‐resistant, and humidity stimulus‐responsive bioplastic film can be fabricated from the supramolecular nanofibers. The discoveries provide critical insights into the assembly of polysaccharides into supramolecular nanofibers and open up many possibilities to prepare advanced nanomaterials from natural polysaccharides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.