Abstract

Like flavonoids, biflavonoids, dimeric flavonoids, and polyphenolic plant secondary metabolites have antioxidant, antibacterial, antiviral, anti-inflammatory, and anti-cancer properties. However, there is limited data on their effects on cytochrome P450 (P450) and uridine 5′-diphosphoglucuronosyl transferase (UGT) enzyme activities. In this study we evaluate the inhibitory potential of five biflavonoids against nine P450 activities (P450s1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A) in human liver microsomes (HLMs) using cocktail incubation and liquid chromatography-tandem mass spectrometry (LC–MS/MS). The most strongly inhibited P450 activity was CYP2C8-mediated amodiaquine N-dealkylation with IC50 ranges of 0.019~0.123 μM. In addition, the biflavonoids—selamariscina A, amentoflavone, robustaflavone, cupressuflavone, and taiwaniaflavone—noncompetitively inhibited CYP2C8 activity with respective Ki values of 0.018, 0.083, 0.084, 0.103, and 0.142 μM. As selamariscina A showed the strongest effects, we then evaluated it against six UGT isoforms, where it showed weaker inhibition (UGTs1A1, 1A3, 1A4, 1A6, 1A9, and 2B7, IC50 > 1.7 μM). Returning to the P450 activities, selamariscina A inhibited CYP2C9-mediated diclofenac hydroxylation and tolbutamide hydroxylation with respective Ki values of 0.032 and 0.065 μM in a competitive and noncompetitive manner. However, it only weakly inhibited CYP1A2, CYP2B6, and CYP3A with respective Ki values of 3.1, 7.9, and 4.5 μM. We conclude that selamariscina A has selective and strong inhibitory effects on the CYP2C8 and CYP2C9 isoforms. This information might be useful in predicting herb-drug interaction potential between biflavonoids and co-administered drugs mainly metabolized by CYP2C8 and CYP2C9. In addition, selamariscina A might be used as a strong CYP2C8 and CYP2C9 inhibitor in P450 reaction-phenotyping studies to identify drug-metabolizing enzymes responsible for the metabolism of new chemicals.

Highlights

  • Flavonoids are polyphenolic secondary metabolites that are common in the plant kingdom and are ingested by humans in their food [1]

  • We investigated the effect of incubation time on IC50 values of selamariscina A using the CYP2C8 substrate amodiaquine and the CYP2C9 substrate diclofenac

  • We report that selamariscina A is a strong CYP2C8 and CYP2C9 inhibitor

Read more

Summary

Introduction

Flavonoids are polyphenolic secondary metabolites that are common in the plant kingdom and are ingested by humans in their food [1]. Flavonoids are grouped into various classes based on structure. These classes are: anthocyanidins, chalcones, flavanones, flavones, flavonols, isoflavonoids, and biflavonoids [2]. Many pharmacological benefits have been ascribed to flavonoids, including antioxidant, anti-inflammatory, anti-cancer, antiviral, and hepatoprotective effects [3,4]. Intake of flavonoids has been estimated at 100 mg/day in the Asian population because of the high consumption of soy products [6,7]. Daily intake of flavonoids has been estimated to be in the range of 20–50 mg/day in Western populations [8]. Further intake of flavonoids through dietary supplements and plant extracts with prescribed drugs is common. The vast body of literature describes the significant interactions between flavonoid herbs and therapeutic drugs

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call