Abstract

The lack of efficient and non-precious metal catalysts poses a challenge for electrochemical water splitting in hydrogen and oxygen evolution reactions. Here, we report on the preparation of growing Ni(OH)2 nanosheets in situ on a Ni and graphene hybrid using supergravity electrodeposition and the hydrothermal method. The obtained catalyst displays outstanding performance with small overpotentials of 161.7 and 41 mV to acquire current densities of 100 and 10 mA cm−2 on hydrogen evolution reaction, overpotentials of 407 and 331 mV to afford 100 and 50 mA cm−2 on oxygen evolution reaction, and 10 mA·cm−2 at a cell voltage of 1.43 V for water splitting in 1 M KOH. The electrochemical activity of the catalyst is higher than most of the earth-abundant materials reported to date, which is mainly due to its special hierarchical structure, large surface area, and good electrical conductivity. This study provides new tactics for enhancing the catalytic performance of water electrolysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call