Abstract

Super strong and fast-recovery organic/inorganic hybrid gold nanoparticle (AuNPs)-supramolecular gels based on a three-dimensional loofah-like nanoscale network self-assembled by polyhedral oligomeric silsesquioxane (POSS) core supramolecular gelators are reported for the first time. Two series of POSS core organic/inorganic hybrid gelators, POSS-BOC-l-Homophenylalanine (POSS-Hpy) and POSS-Boc-Cys(Bzl)-OH (POSS-Cys), with two types of peripherals having different abilities for driving the self-assembly of AuNPs in gels were designed and synthesized, both of which self-assembled into three-dimensional loofah-like nanoscale gel networks producing hybrid physical gels with fast-recovery behaviors. The mechanical properties of the resultant hybrid gels were dramatically increased by as much as 100 times in the system of sulfur containing POSS-Cys gelators without destroying the fast-recovery behaviors, with the addition of AuNPs, which had direct interaction with AuNPs to give S-Au non-covalent driving force to lead AuNPs self-assemble onto the 3D loofah-like network nanofibres in the supramolecular hybrid gel system. However, in the POSS-Hpy gelator system without sulfur, no strong interaction with AuNPs existed and the POSS-Hpy nanocomposites showed no clear changes in morphology, thermal stability or rheological properties, confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), tube-inversion and rotational rheometer measurements. This indicated that the organic/inorganic hybrid gelator POSS-Cys could be applied to the formation of soft materials in which AuNPs were self-assembled and closely arranged into three-dimensional nanoscale networks. This hybrid material has great potential for applications in self-recovery, nano- and micron-scale electronic devices, because it has both a large mechanical strength and a fast-recovery capability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.