Abstract
The nanoscale ampification of light-matter interactions exhibits profound potential in multiple scientific fields, such as physics, chemistry, surface science, materials science, and nanophotonics. Nonetheless, achieving robust optical mode coupling within cavities faces significant hurdles due to modal dispersion and weak optical field confinement. In this theoretical investigation, we demonstrate the viability of strong coupling between the anapole mode of a slotted silicon nanodisk and the plasmonic modes of an Ag nanodisk dimer at visible light frequencies. By introducing anapole modes, we successfully confine light to subwavelength volumes, suppressing radiative losses and achieving a remarkable Rabi splitting of 468 meV. This substantial coupling is facilitated by the large spatial overlap of intense optical fields. Capitalizing on this strong mode coupling, we generate novel hybrid energy states with significant electromagnetic field enhancement. Our study serves as a valuable blueprint for designing platforms based on strong anapole mode coupling at visible frequencies and paves the way for deeper explorations into nanoscale light-matter interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.