Abstract
This paper is about almost reducibility of quasi-periodic cocycles with a diophantine frequency which are sufficiently close to a constant. Generalizing previous works by L.H.Eliasson, we show a strong version of almost reducibility for analytic and Gevrey cocycles, that is to say, almost reducibility where the change of variables is in an analytic or Gevrey class which is independent of how close to a constant the initial cocycle is conjugated. This implies a result of density, or quasi-density, of reducible cocycles near a constant. Some algebraic structure can also be preserved, by doubling the period if needed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin de la Société mathématique de France
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.