Abstract
In the ordinal matroid secretary problem (MSP), candidates do not reveal numerical weights, but the decision maker can still discern if a candidate is better than another. An algorithm [Formula: see text] is probability-competitive if every element from the optimum appears with probability [Formula: see text] in the output. This measure is stronger than the standard utility competitiveness. Our main result is the introduction of a technique based on forbidden sets to design algorithms with strong probability-competitive ratios on many matroid classes. We improve upon the guarantees for almost every matroid class considered in the MSP literature. In particular, we achieve probability-competitive ratios of 4 for graphic matroids and of [Formula: see text] for laminar matroids. Additionally, we modify Kleinberg’s [Formula: see text] utility-competitive algorithm for uniform matroids of rank [Formula: see text] in order to obtain a [Formula: see text] probability-competitive algorithm. We also contribute algorithms for the ordinal MSP on arbitrary matroids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.