Abstract
The adhesion and friction coupling of hierarchical carbon nanotube arrays was investigated with a hierarchical multiscale modeling approach. At device level, vertically aligned carbon nanotube (VA-CNT) arrays with laterally distributed segments on top were analyzed via finite element methods to determine the macroscopic adhesion and friction force coupling. At the nanoscale, molecular dynamics simulation was performed to explore the origin of the adhesion enhancement due to the existence of the laterally distributed CNTs. The results show interfacial adhesion force is drastically promoted by interfacial friction force when a single lateral CNT is being peeled from an amorphous carbon substrate. By fitting with experiments, we find that under shearing loadings the maximum interfacial adhesion force is increased by a factor of ~5, compared to that under normal loadings. Pre-existing surface asperities of the substrate have proven to be the source of generating large interfacial friction, which in turn results in an enhanced adhesion. The critical peeling angles derived from the continuum and nano- levels are comparable to those of geckos and other synthetic adhesives. Our analysis indicates that the adhesion enhancement factor of the hierarchically structured VA-CNT arrays could be further increased by uniformly orienting the laterally distributed CNTs on top. Most importantly, a significant buckling of the lateral CNT at peeling front is captured on the molecular level, which provides a basis for the fundamental understanding of local deformation, and failure mechanisms of nanofibrillar structures. This work gives an insight into the durability issues that prevent the success of artificial dry adhesives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.