Abstract

Chronic wounds create a formidable clinical problem resulting in considerable morbidity and healthcare expenditure. The etiology for wound healing impairment appears to be multifactorial; however, ischemia is a common factor in most types of chronic wounds. Ideal therapy for such wounds would be to correct deficiencies in growth factors and matrix components and provide cellular precursors required for timely wound closure. We hypothesized that stromal progenitor cell (SPC) therapy could correct the ischemic wound-healing defect through both direct and indirect mechanisms. To test this hypothesis, we used the ischemic rabbit ear model of chronic wound healing. We found that treatment of the wounds with SPCs was able to reverse the ischemic wound-healing impairment, with improved granulation tissue formation and reepithelialization compared with vehicle or bone marrow mononuclear cell controls. In vitro, SPCs were found to produce factors involved in angiogenesis and reepithelialization, and extracellular matrix components, providing evidence for both direct and indirect mechanisms for the observed correction of the healing impairment in these wounds. Treatment of ischemic wounds with SPCs can dramatically improve wound healing and provides a rationale for further studies focused on SPCs as a potential cellular therapy in impaired wound healing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call