Abstract
Metastasis is the leading cause of death in hepatocellular carcinoma (HCC) patients, and autophagy plays a crucial role in this process by orchestrating epithelial-mesenchymal transition (EMT). Stromal interaction molecule 1 (STIM1), a central regulator of store-operated calcium entry (SOCE) in nonexcitable cells, is involved in the development and spread of HCC. However, the impact of STIM1 on autophagy regulation during HCC metastasis remains unclear. Here, we demonstrate that STIM1 is temporally regulated during autophagy-induced EMT in HCC cells, and knocking out (KO) STIM1 significantly reduces both autophagy and EMT. Interestingly, STIM1 enhances autophagy through both SOCE-dependent and independent pathways. Mechanistically, STIM1 directly interacts with microtubule-associated protein 1A/1B-light chain 3B (LC3B) to form a complex via the sterile-α motif (SAM) domain, which promotes autophagosome formation. Furthermore, deletion of the SAM domain of STIM1 abolishes its binding with LC3B, leading to a decrease in autophagy and EMT in HCC cells. These findings unveil a novel mechanism by which the STIM1/LC3B complex mediates autophagy and EMT in HCC cells, highlighting a potential target for preventing HCC metastasis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.