Abstract

Rapid bladder growth associated, partial urethral obstruction and embryonic bladder development entail stromal-epithelial interactions involving signaling by the cytokine transforming growth factor-beta (TGF-beta). However, to our knowledge the role of TGF-beta in bladder stromal hyperplasia and hypertrophy is not understood. In an effort to understand the specific role of TGF-beta signaling in bladder stroma a fibroblast specific conditional knockout mouse of the type II TGF-beta receptor gene, Tgfbr2(/spko), was generated using Cre-lox methodology. Bladders from 18, 7 to 8-week-old mice were harvested for histological and immunohistochemical analysis. Bladders from homozygous Tgfbr2(/spko), male mice showed marked hypertrophy in the lamina propria and smooth muscle layers in the absence of visible or functional bladder obstruction by age 8 weeks. However, age matched female mice of the same genotype maintained bladder architecture similar to that in wild-type littermate male and female controls. Immunohistochemistry for the phosphorylated form of Smad2 indicated a general loss in TGF-beta signaling in the lamina propria of bladders of male and female Tgfbr2(/spko), mice, and yet pronounced alpha-smooth muscle actin expression was noted in male Tgfbr2(/spko), bladders, which is a marker for myofibroblasts. A sex disparity was observed in the Tgfbr2(/spko), mouse model lacking TGF-beta signaling in fibroblasts. Deletion of TGF-beta in males leads to a hypertrophied lamina propria and muscularis externa with myofibroblast differentiation and proliferation. Female homozygous Tgfbr2(/spko), bladders appeared the same as those of wild-type male and female controls. This model suggests a role for stromal TGF-beta signaling with estrogens and androgens in bladder fibrosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.