Abstract
Stromal cell-derived factor 1 (SDF-1) and the chemokine receptor CXCR4 are highly expressed in the nervous system. Knockout studies have suggested that both SDF-1 and CXCR4 play essential roles in cerebellar, hippocampal, and neocortical neural cell migration during embryogenesis. To extend these observations, CXCR4 signaling events in rat and human neural progenitor cells (NPCs) were examined. Our results show that CXCR4 is expressed in abundance on rat and human NPCs. Moreover, SDF-1alpha induced increased NPCs levels of inositol 1,4,5-triphosphate, extracellular signal-regulated kinases 1/2, Akt, c-Jun N-terminal kinase, and intracellular calcium whereas it diminished cyclic adenosine monophosphate. Finally, SDF-1alpha can induce human NPC chemotaxis in vitro, suggesting that CXCR4 plays a functional role in NPC migration. Both T140, a CXCR4 antagonist, and pertussis toxin (PTX), an inactivator of G protein-coupled receptors, abrogated these events. Ultimately, this study suggested that SDF-1alpha can influence NPC function through CXCR4 and that CXCR4 is functional on NPC.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.