Abstract

Recent studies have demonstrated the potential of bone marrow-derived cells (BMDC) to differentiate into cardiomyocytes. Up-regulation of stromal cell-derived factor-1 (SDF-1), a member of the chemokine CXC subfamily, mediating recruitment of BMDC has been documented in infarcted myocardium; however, it remains unknown whether SDF-1 plays a role in cardiomyogenesis of BMDC. Adherent BMDCs were cultured with SDF-1, or specific inhibitor for PI3K, CXCR4 or Akt with SDF-1, respectively. After 2 weeks, mRNAs and proteins from BMDCs were examined. Two weeks after supplementation with SDF-1, either murine or human adherent BMDC cultured in vitro expressed cardiac specific mRNAs (NKX2.5, atrial natriuretic factor and heavy chain beta-myosin) and proteins (troponin I and heavy chain cardiac myosin), and expression levels were partly decreased by combined treatment of CXCR4, PI3K or Akt inhibitor, with SDF-1. The novel findings suggest that beyond its role in mobilization and homing of BMDC, SDF-1 can promote BMDC to give rise to cardiomyocyte phenotypes in vitro, and the SDF-1/CXCR4/PI3K/Akt pathway may be one of the molecular mechanisms regulating cardiomyogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.