Abstract

Cancer-associated fibroblasts (CAFs) were believed to establish a tight physical barrier and a dense scaffold for tumor cells to make them maintain immunosuppression and drug resistance, strongly hindering nanoparticles to penetrate into the core of tumor tissues and limiting the performance of tumor cell-targeted nanoparticles. Here, we fabricated the substrate Z-Gly-Pro of fibroblast activation protein α (FAPα) and folic acid-codecorated pH-responsive polymeric micelles (dual ligand-modified PEOz-PLA polymeric micelles, DL-PP-PMs) that possessed nanodrill and tumor cell-targeted functions based on Z-Gly-pro-conjugated poly(2-ethyl-2-oxazoline)-poly(D,l-lactide) (ZGP-PEOz-PLA), folic acid (FA)-conjugated PEOz-PLA (FA-PEOz-PLA), and PEOz-PLA for cancer therapy. The micelles with about 40 nm particle size and a narrow distribution exhibited favorable pH-activated endo/lysosome escape induced by their pH responsibility. In addition, the enhancement of in vitro cellular uptake and cytotoxicity to folate receptors or FAPα-positive cells for doxorubicin (DOX)/DL-PP-PMs compared with DOX/PP-PMs evidenced the dual target ability of DOX/DL-PP-PMs, which was further supported by in vivo biodistribution results. As expected, in the human oral epidermal carcinoma (KB) cells xenograft nude mice model, the remarkable enhancement of antitumor efficacy for DOX/DL-PP-PMs with low toxicity was observed compared with DOX/FA-PP-PMs and DOX/ZGP-PP-PMs. The possible mechanism was elucidated to be the dismantling of the stromal barrier by nanodrill-like DOX/DL-PP-PMs via the deletion of CAFs evidenced by the downregulation of α-SMA and inhibition of their functions proved by the decrease in the microvascular density labeled with CD31 and the reduction in the extracellular matrix detected by the collagen content, thereby promoting tumor penetration and enhancing their uptake by tumor cells. The present research offered an alternative approach integrating anticancer and antifibrosis effects in one delivery system to enhance the delivery efficiency and therapeutic efficacy of anticancer drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call