Abstract

This paper presents Markov random fields (MRFs) to segment strokes of Chinese characters. The distortions caused by the thinning process make the thinning-based stroke segmentation difficult to extract continuous strokes and handle the ambiguous intersection regions. The MRFs reflect the local statistical dependencies at neighboring sites of the stroke skeleton, where the likelihood clique potential describes the statistical variations of directional observations at each site, and the smoothness prior clique potential describes the interactions among observations at neighboring sites. Based on the cyclic directional observations by Gabor filters, we formulate the stroke segmentation as an optimal labeling problem by the maximum a posteriori (MAP) criterion. The results of stroke segmentation on the ETL-9B character database are encouraging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.