Abstract

The stroke and natural frequency are key controlling quantities for linear compressor controller. This paper proposes a phasor algorithm for the linear compress stroke and natural frequency calculation. The phasor algorithm employs vectors to express the voltage, current and velocity respectively for the calculation in frequency domain. A test bench has been installed, and the feasibility of phasor algorithm is verified with the linear compressor load changing. The relative deviation of the calculated stroke can be achieved within ± 3% compared to the experimental results at 0.4 MPa, 0.5 MPa and 0.6 MPa discharge pressure respectively. The calculated results shows that the computation time of phasor algorithm is one-third shorter than that of time domain algorithm, which means it is possible to employ relatively low energy consumption and low cost hard ware. The calculation natural frequency decreases with the stroke increases at 0.4 MPa, 0.5 MPa and 0.6 MPa discharge pressure respectively, and the tested motor efficiency reaches a maximum when the calculated natural frequency equals to the operating frequency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call