Abstract

The potential energy surfaces for Cl(2)CS dissociation into ClCS + Cl in the five lowest electronic states have been determined with the combined complete active space self-consistent field (CASSCF) and MR-CI method. The wavelength-dependent photodissociation dynamics of Cl(2)CS have been characterized through computed potential energy surfaces, surface crossing points, and CASSCF molecular dynamics calculations. Irradiation of the Cl(2)CS molecules at 360-450 nm does not provide sufficient internal energy to overcome the barrier on S(1) dissociation, and the S(1)/T(2) intersection region is energetically inaccessible at this wavelength region; therefore, S(1) --> T(1) intersystem crossing is the dominant process, which is the main reason S(1)-S(0) fluorescence breaks off at excess energies of 3484-9284 cm(-1). Also, the S(1) --> T(2) intersystem crossing process can take place via the S(1)-T(2) vibronic interaction in this range of excess energies, which is mainly responsible for the quantum beats observed in the S(1) emission. Both S(2) direct dissociation and S(2) --> S(3) internal conversion are responsible for the abrupt breakoff of S(2)-S(0) fluorescence at higher excess energies. S(2) direct dissociation leads to the formation of the fragments of Cl(X(2)P) + ClCS(A(2)A' ') in excited electronic states, while S(2) --> S(3) internal conversion followed by direct internal conversion to the ground electronic state results in the fragments produced in the ground state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call