Abstract

The electrochemical oxidation of a CO adlayer on Pt[n(111)x(111)] electrodes, with n = 30, 10, and 5, Pt(111), Pt(110) as well as a Pt(553) electrode (with steps of (100) orientation) in alkaline solution (0.1 M NaOH) has been studied using stripping voltammetry. On these electrodes, it is possible to distinguish CO oxidation at four different active oxidation sites on the surface, i.e. sites with (111), (110) and (100) orientation, and kink sites. The least active site for CO oxidation is the (111) terrace site. Steps sites are more active than the (111) terrace sites, the (110) site oxidizing CO at lower potential than the (100) site. The CO oxidation feature with the lowest overpotential (oxidation potential as low as 0.35 V vs. RHE) was ascribed to oxidation of CO at kink sites. The amount of CO oxidized at the active step or kink sites vs. the amount of CO oxidized at the (111) terrace sites depends on the concentration of the active sites and the time given for the terrace-bound CO to reach the active site. By performing CO stripping on the stepped surfaces at different scan rates, the role of CO surface diffusion is probed. The possible role of electronic effects in explaining the unusual activity and dynamics of CO adlayer oxidation in alkaline solution is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call