Abstract

A full-wave analysis method is presented for modeling the radiation properties of a stripline-fed planar printed-aperture antenna element. In this formulation, both the finite length of stripline and the finite aperture may be of any arbitrary shape since their equivalent electric and magnetic currents are modeled with triangular patch basis functions. Galerkin's method is applied to numerically solve the coupled mixed-potential integral equation (MPIE). Exact spatial-domain Green's functions are used to account for all radiation, surface-wave, and mutual-coupling effects. Interactions between the stripline feed and the radiating aperture are rigorously included. Numerical analysis is presented for the following nonrectangular shapes: an exponentially tapered slot, an annular slot, an annular slot with opposing stubs, and a monofilar Archimedean spiral slot element. Results are shown for input return loss, radiation patterns, and axial ratio for the circularly polarized elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.