Abstract

A scanning transmission electron microscope (STEM) offers the advantage to simultaneously collect spatially resolved high-angle annular dark-field (HAADF) signal and electron energy loss spectroscopy (EELS) data. It is however state of the art that HAADF images and EELS spectra are recorded sequentially, meaning that the image acquisition is interrupted for spectrum acquisition. The disadvantage of such sequential recording techniques is that, there is frequently no control of the measurement location on an atomic scale, regardless of the beam residing at one spot or scanning along a line during EELS data acquisition. Loss of the measurement location at high resolution is in particular inflicted by inherent specimen and beam drift due to the high dwell time required for attaining a reasonable signal-to-noise ratio in EELS spectra.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call