Abstract

Playing a crucial role in ocean activities, internal solitary waves (ISWs) are of significant importance. Currently, the use of deep learning for detecting ISWs in synthetic aperture radar (SAR) imagery is gaining growing attention. However, these approaches often demand a considerable number of labeled images, which can be challenging to acquire in practice. In this study, we propose an innovative method employing a pyramidal conditional generative adversarial network (PCGAN). At each scale, it employs the framework of a conditional generative adversarial network (CGAN), comprising a generator and a discriminator. The generator works to produce internal wave patterns as authentically as possible, while the discriminator is designed to differentiate between images generated by the generator and reference images. The architecture based on pyramids adeptly captures the encompassing as well as localized characteristics of internal waves. The incorporation of upsampling further bolsters the model’s ability to recognize fine-scale internal wave stripes. These attributes endow the PCGAN with the capacity to learn from a limited amount of internal wave observation data. Experimental results affirm that the PCGAN, trained with just four internal wave images, can accurately detect internal wave stripes in the test set. Through comparative experiments with other segmentation models, we demonstrate the effectiveness and robustness of PCGAN.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.