Abstract

By modeling the stripe phase in cuprates as spin gapped stripes coupled to the RVB liquid of preformed electron pairs, I derive the low energy effective theory of the RVB phase variable. It is found that the effect of stripe dynamics (including both longitudinal and transverse modes) leads to incipient temporal phase stiffness in the RVB liquid, which tunes a quantum phase transition toward a superconducting ground state with global phase order. Physical consequences of this quantum criticality are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.