Abstract

A ring-shaped crack under uniform load in an infinitely long elastic–perfectly plastic thick layer is considered. The problem is formulated for a transversely isotropic material by using integral transform technique. Due to the geometry of the configuration, Hankel integral transform technique was chosen and the problem was reduced to a singular integral equation which is solved numerically by using Gaussian Quadrature Formulae and the values were evaluated at discrete points. The plastic zone widths were obtained by using the plastic strip model after stress intensity factors were obtained. Numerical results are plotted for various ring-shaped crack sizes and transversely isotropic materials. It was found that the width of the plastic zone at the inner edge of the crack was greater than the outer one.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call