Abstract
The dynamics of a probe particle or wrapped brane moving in the two-dimensional Rindler space can be described by a time-dependent tachyon field theory. Using knowledge of tachyon condensation, we learn that the infalling brane gets thermalised and produces open string pairs at the Hagedorn temperature when entering into the near-horizon Rindler wedge. It is shown that the Hagedorn temperature of the infalling brane is equal to the Hawking temperature of the host black hole detected in the same time coordinate. The infalling brane will decay completely into closed strings, mainly massive modes, when it reaches the horizon in infinitely long time as observed by observers at spatial infinity. Preliminary estimates indicate that the degeneracy of states of the closed strings emitted from the infalling brane should be responsible for the increased entropy in the host black hole due to absorption of the brane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.