Abstract

The characteristic energy scale of superstring theory, which attempts to unify all the interactions of matter with gravity, is the Planck energy of 10 28 eV. Although this energy is 16 orders of magnitude higher than currently accessible energies, it is important to consider the nature of string physics in this region since it could shed light on the non-perturbative physics at the Planck scale, which determines the structure of the vacuum. In this paper I review some recent attempts to explore this domain. In particular, I discuss string scattering at very high energies, the indications of the existence of a large symmetry that is restored at short distances and the possible breakdown of our concepts of space-time at these energies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.