Abstract

We consider constrained minimization problems and propose to replace the projection onto the entire feasible region, required in the projected subgradient method, by projections onto the individual sets whose intersection forms the entire feasible region. Specifically, we propose to perform such projections onto the individual sets in an algorithmic regime of a feasibility-seeking iterative projection method. For this purpose we use the recently developed family of dynamic string-averaging projection methods wherein iteration-index-dependent variable strings and variable weights are permitted. This gives rise to an algorithmic scheme that generalizes, from the algorithmic structural point of view, earlier work of Helou Neto and De Pierro, of Nedić, of Nurminski, and of Ram et al.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.