Abstract

Very different strongly interacting quantum systems such as Fermi gases, quark-gluon plasmas formed in high energy ion collisions and black holes studied theoretically in string theory are known to exhibit quantitatively similar damping of hydrodynamic modes. It is not known if such similarities extend beyond the hydrodynamic limit. Do non-hydrodynamic collective modes in Fermi gases with strong interactions also match those from string theory calculations? In order to answer this question, we use calculations based on string theory to make predictions for novel types of modes outside the hydrodynamic regime in trapped Fermi gases. These predictions are amenable to direct testing with current state-of-the-art cold atom experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call