Abstract

Results of Anick (1986), Squier (1987), Kobayashi (1990), Brown (1992b), and others, show that a monoid with a finite convergent rewriting system satisfies a homological condition known as FP∞.In this paper we give a simplified version of Brown's proof, which is conceptual, in contrast with the other proofs, which are computational.We also collect together a large number of results and examples of monoids and groups that satisfy FP∞ and others that do not. These may provide techniques for showing that various monoids do not have finite convergent rewriting systems, as well as explicit examples with which methods can be tested.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.