Abstract

String theory has emerged as the leading candidate for a unified field theory of all known forces. However, it is impossible to trust the various phenomenological predictions of superstring theory based on classical solutions alone. It appears that the crucial problem of the theory, breaking ten dimensional space-time down to four dimensions, must be solved nonperturbatively before we can extract reliable predictions. String field theory may be the only formalism in which we can resolve this decisive question. Only a rigorous calculation of the true vacuum of the theory will determine which of the many classical solutions the theory actually predicts. In this review article, we summarize the rapid progress in constructing string field theory actions, such as the development of the covariant BRST theory. We also present the newer geometric formulation of string field theory, from which the BRST theory and the older light cone theory can be derived from first principles. This geometric formulation allows us to derive the complete field theory of strings from two geometric principles, in the same way that general relativity and Yang-Mills theory can be derived from two principles based on global and local symmetry. The geometric formalism therefore reduces string field theory to a problem of finding an invariant under a new local gauge group we call the universal string group (USG). Thus, string field theory is the gauge theory of the universal string group in much the same way that Yang-Mills theory is the gauge theory of SU (N). Thus, the geometric formulation places superstring theory on the same rigorous group theoretical level as general relativity and gauge theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call