Abstract

Consider the following experiment: a person is put in a room-size box high above the moon (chosen because there is no air and hence no air friction) with a bunch of measuring devices. This box is then taken high above the lunar surface and then let go: the box is then freely falling. The question is now, can the observer determine whether he/she is falling or whether he/she is in empty space unaffected by external forces (of course the answer is supposed to come before the box hits the surface). The answer to that is a definite NO! The observer can do experiments by looking at how objects move when initially at rest and when given a kick, he/she will find that they appear to move as is there were no gravitational forces at all! Similarly any experiment in physics, biology, etc. done solely inside the box will be unable to determine whether the box is freely falling or in empty space. Why is that? Because of the equality of the gravitational and inertial masses. All objects are falling together and are assumed to be rather close to each other (the box is not immense) hence the paths they will follow will be essentially the same for each of them. So if the observer lets go of an apple, the apple and the observer follow essentially the same trajectory, and this implies that the observer will not see the apple move with respect to him. In fact, if we accept the principle of equivalence, .We could find extra dimension in this experiment . International Journal of Scientific Research in Engineering and Management (IJSREM) Volume: 07 Issue: 08 | August - 2023 SJIF Rating: 8.176 ISSN: 2582-3930 © 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM25096 | Page 2 nothing can be done to determine the fact that the observer is falling towards the Moon, for this can be done only if we could find some object which behaved differently from all the rest, and this can happen only if its gravitational and inertial masses are different. The principle of equivalence then implies that the observer will believe that he/she is an inertial frame of reference...until disabused of the notion by the crash with the surface. The principle of equivalence is of interest neither because of its simplicity, nor because it leads to philosophically satisfying conclusions. Its importance is based on the enormous experimental evidence which confirms it; as with the Special Theory, the General Theory of Relativity is falsifiable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call