Abstract

The energy spectrum of a system containing a static quark anti-quark pair is computed for a wide range of source separations using lattice QCD with Nf=2+1 dynamical flavours. By employing a variational method with a basis including operators resembling both the gluon string and systems of two separated static mesons, the first three energy levels are determined up to and beyond the distance where it is energetically favourable for the vacuum to screen the static sources through light- or strange-quark pair creation, enabling both these screening phenomena to be observed. The separation dependence of the energy spectrum is reliably parameterised over this saturation region with a simple model which can be used as input for subsequent investigations of quarkonia above threshold and heavy-light and heavy-strange coupled-channel meson scattering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.