Abstract

Let $G \to P \to M$ be a flat principal bundle over a closed and oriented manifold $M$ of dimension $m=2d$. We construct a map of Lie algebras $\Psi: \H_{2\ast} (L M) \to {\o}(\Mc)$, where $\H_{2\ast} (LM)$ is the even dimensional part of the equivariant homology of $LM$, the free loop space of $M$, and $\Mc$ is the Maurer-Cartan moduli space of the graded differential Lie algebra $\Omega^\ast (M, \adp)$, the differential forms with values in the associated adjoint bundle of $P$. For a 2-dimensional manifold $M$, our Lie algebra map reduces to that constructed by Goldman in \cite{G2}. We treat different Lie algebra structures on $\H_{2\ast}(LM)$ depending on the choice of the linear reductive Lie group $G$ in our discussion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.