Abstract
Many severe security vulnerabilities in web applications can be attributed to string manipulation mistakes, which can often be avoided through formal string analysis. String analysis tools are indispensable and under active development. Prior string analysis methods are primarily automata-based or satisfiability-based. The two approaches exhibit distinct strengths and weaknesses. Specifically, existing automata-based methods have difficulty in generating counterexamples at system inputs to witness vulnerability, whereas satisfiability-based methods are inadequate to produce filters amenable for firmware or hardware implementation for real-time screening of malicious inputs to a system under protection. In this paper, we propose a new string analysis method based on a scalable logic circuit representation for (nondeterministic) finite automata to support various string and automata manipulation operations. It enables both counterexample generation and filter synthesis in string constraint solving. By using the new data structure, automata with large state spaces and/or alphabet sizes can be efficiently represented. Empirical studies on a large set of open source web applications and well-known attack patterns demonstrate the unique benefits of our method compared to prior string analysis tools.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.