Abstract
Infant adiposity better predicts childhood obesity/metabolic risk than weight, but technical challenges fuel controversy over the accuracy of adiposity estimates. We prospectively measured adiposity (%fat) in term newborns (NB) at 2 weeks (n = 41) and 1 year (n = 30). %fat was measured by dual X-ray absorptiometry (DXA), PEAPOD and skin-folds (SF). DXAs were analyzed using Hologic Apex software 3.2(DXAv1) and a new version 5.5.2(DXAv2). NB %fat by DXAv2 was 55% higher than DXAv1 (14.2% vs. 9.1%), 45% higher than SF (9.8%), and 36% higher than PEAPOD (10.4%). Among NB, Pearson correlations were 0.73-0.89, but agreement (intra-class correlations) poor between DXAv2 and DXAv1 (0.527), SF (0.354) and PEAPOD (0.618). At 1 year, %fat by DXAv2 was 51% higher than DXAv1 (33.6% vs. 22.4%), and twice as high compared with SF (14.6%). Agreement was poor between DXAv2 and DXAv1 (0.204), and SF (0.038). The absolute increase in %fat from 2 weeks to 1 year was 19.7% (DXAv2), 13.6% (DXAv1) and only 4.8% by SF. Analysis of the same DXA scans using new software yielded considerably higher adiposity estimates at birth and 1 year compared with the previous version. Using different modalities to assess body composition longitudinally is problematic. Standardization is gravely needed to determine how early life exposures affect childhood obesity/metabolic risk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.