Abstract

Strigolactones were recently identified as a new class of plant hormones involved in the control of shoot branching. The characterization of strigolactone mutants in several species has progressively revealed their contribution to several other aspects of development in roots and shoots. In this article, we characterize strigolactone-deficient and strigolactone-insensitive mutants of the model legume Medicago truncatula for aerial developmental traits. The most striking mutant phenotype observed was compact shoot architecture. In contrast with what was reported in other species, this could not be attributed to enhanced shoot branching, but was instead due to reduced shoot elongation. Another notable feature was the modified leaf shape in strigolactone mutants: serrations at the leaf margin were smaller in the mutants than in wild-type plants. This phenotype could be rescued in a dose-dependent manner by exogenous strigolactone treatments of strigolactone-deficient mutants, but not of strigolactone-insensitive mutants. Treatment with the auxin transport inhibitor N-1-naphthylphtalamic acid resulted in smooth leaf margins, opposite to the effect of strigolactone treatment. The contribution of strigolactones to the formation of leaf serrations in M. truncatula R108 line represents a novel function of these hormones, which has not been revealed by the analysis of strigolactone mutants in other species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.