Abstract
AbstractLetXbe a locally compact space, and 𝔏∞0(X,ι) be the space of all essentially boundedι-measurable functionsfonXvanishing at infinity. We introduce and study a locally convex topologyβ1(X,ι) on the Lebesgue space 𝔏1(X,ι) such that the strong dual of (𝔏1(X,ι),β1(X,ι)) can be identified with$({\frak L}_0^\infty (X,\iota ),\|\cdot \|_\infty )$. Next, by showing thatβ1(X,ι) can be considered as a natural mixed topology, we deduce some of its basic properties. Finally, as an application, we prove thatL1(G) , the group algebra of a locally compact Hausdorff topological groupG, equipped with the convolution multiplication is a complete semitopological algebra under theβ1(G) topology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.