Abstract

AbstractLet X be a measurable space, let be a family of measurable subsets of it, and let be a subspace of complex measures on X that is also closed under restrictions of measures. In this paper we introduce the ‐convergence topology and the ‐strict topology on . Among other results, we find necessary and sufficient conditions for Hausdorff‐ness and coincide‐ness of these topologies. Applications to Lebesgue spaces, and also examples in Hausdorff topological spaces and locally compact groups are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.