Abstract
In this paper we consider the problem of the strict self-assembly of infinite fractals within tile self-assembly. In particular, we provide tile assembly algorithms for the assembly of a Sierpinski triangle and the discrete Sierpinski carpet within a class of models we term the h-handed assembly model (h-HAM), which generalizes the 2-HAM to allow up to h assemblies to combine in a single assembly step. Despite substantial consideration, no purely growth self-assembly model has yet been shown to strictly assemble an infinite fractal without significant modification to the fractal shape. In this paper we not only achieve this, but in the case of the Sierpinski carpet are able to achieve it within the 2-HAM, one of the most well studied tile assembly models in the literature. Our specific results are as follows: We provide a 6-HAM construction for a Sierpinski triangle that works at scale factor 1, 30 tile types, and assembles the fractal in a near perfect way in which all intermediate assemblies are finite-sized iterations of the recursive fractal. We further assemble a Sierpinski triangle within the 3-HAM at scale factor 3 and 990 tile types. For the Sierpinski carpet, we present a 2-HAM result that works at scale factor 3 and uses 1216 tile types. We further include analysis showing that the aTAM is incapable of strictly assembling the Sierpinski triangle considered in this paper, and that multiple hands are needed for the near-perfect assembly of a Sierpinski triangle and the Sierpinski carpet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.