Abstract
This paper is devoted to strict K-monotonicity and K-order continuity in symmetric spaces. Using a local approach to the geometric structure in a symmetric space E we investigate a connection between strict K-monotonicity and global convergence in measure of a sequence of the maximal functions. Next, we solve an essential problem whether an existence of a point of K-order continuity in a symmetric space E on [0,infty ) implies that the embedding Ehookrightarrow {L^1}[0,infty ) does not hold. We present a complete characterization of an equivalent condition to K-order continuity in a symmetric space E using a notion of order continuity and the fundamental function of E. We also investigate a relationship between strict K-monotonicity and K-order continuity in symmetric spaces and show some examples of Lorentz spaces and Marcinkiewicz spaces having these properties or not. Finally, we discuss a local version of a crucial correspondence between order continuity and the Kadec–Klee property for global convergence in measure in a symmetric space E.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.