Abstract

Increasing tensor powers of the [Formula: see text] matrices [Formula: see text] are known to give rise to a continuous bundle of [Formula: see text]-algebras over [Formula: see text] with fibers [Formula: see text] and [Formula: see text], where [Formula: see text], the state space of [Formula: see text], which is canonically a compact Poisson manifold (with stratified boundary). Our first result is the existence of a strict deformation quantization of [Formula: see text] à la Rieffel, defined by perfectly natural quantization maps [Formula: see text] (where [Formula: see text] is an equally natural dense Poisson subalgebra of [Formula: see text]). We apply this quantization formalism to the Curie–Weiss model (an exemplary quantum spin with long-range forces) in the parameter domain where its [Formula: see text] symmetry is spontaneously broken in the thermodynamic limit [Formula: see text]. If this limit is taken with respect to the macroscopic observables of the model (as opposed to the quasi-local observables), it yields a classical theory with phase space [Formula: see text] (i.e. the unit three-ball in [Formula: see text]). Our quantization map then enables us to take the classical limit of the sequence of (unique) algebraic vector states induced by the ground state eigenvectors [Formula: see text] of this model as [Formula: see text], in which the sequence converges to a probability measure [Formula: see text] on the associated classical phase space [Formula: see text]. This measure is a symmetric convex sum of two Dirac measures related by the underlying [Formula: see text]-symmetry of the model, and as such the classical limit exhibits spontaneous symmetry breaking, too. Our proof of convergence is heavily based on Perelomov-style coherent spin states and at some stage it relies on (quite strong) numerical evidence. Hence the proof is not completely analytic, but somewhat hybrid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call