Abstract
The present paper is concerned with Schr\"odinger equations with variable coefficients and unbounded electromagnetic potentials, where the kinetic energy part is a long-range perturbation of the flat Laplacian and the electric (resp. magnetic) potential can grow subquadratically (resp. sublinearly) at spatial infinity. We prove sharp (local-in-time) Strichartz estimates, outside a large compact ball centered at origin, for any admissible pair including the endpoint. Under the nontrapping condition on the Hamilton flow generated by the kinetic energy, global-in-space estimates are also studied. Finally, under the nontrapping condition, we prove Strichartz estimates with an arbitrarily small derivative loss without asymptotic flatness on the coefficients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.