Abstract
Capacitively coupled radio-frequency (CCRF) CF4 plasmas have been found to exhibit a self-organized striated structure at operating conditions, where the plasma is strongly electronegative and the ion-ion plasma in the bulk region (largely composed of CF3+ and F– ions) resonates with the excitation frequency. In this work, we explore the effects of the gas pressure, the RF voltage, and the electrode gap on this striated structure by phase resolved optical emission spectroscopy and particle-in-cell/Monte Carlo collisions simulations. The measured electronic excitation patterns at different external parameters show a good general agreement with the spatio-temporal plots of the ionization rate obtained from the simulations. For a fixed driving frequency, the minima of the CF3+ or F– ion densities (between the density peaks in the bulk) are comparable and independent of other external parameters. However, the ion density maxima generally increase as a function of the pressure or RF voltage, leading to the enhanced spatial modulation of plasma parameters. The striation gap (defined as the distance between two ion density peaks) is approximately inversely proportional to the pressure, while it exhibits a weak dependence on the RF voltage and the electrode gap. A transition between the striated and non-striated modes can be observed by changing either the pressure or the RF voltage; for 13.56 and 18 MHz driving frequencies, we present a phase diagram as a function of the pressure and voltage amplitude parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.