Abstract

Bilateral ablation of the frontal cortex of rats markedly reduced the catalepsy induced by haloperidol (1 mg/kg i.p.). Similarly, the selective antagonist of N-methyl-D-aspartate (NMDA) receptors, D(−)-2-amino-5-phosphonopentanoic acid (10 μg/side), injected bilaterally into the rostral part of the caudate-putamen (CP) reduced haloperidol-induced catalepsy whereas its injection into the intermediate part of the CP was ineffective. The quisqualate receptor antagonist, L-glutamic acid diethyl ester (100 μg/side), did not affect haloperidol-induced catalepsy when injected into the rostral part of the CP. On the other hand, NMDA (1μg/side) injected bilaterally into the rostral part of the CP was able to restore haloperidol-induced catalepsy in frontally decorticated rats without any notable cataleptic effect of its own. These findings suggest that a certain degree of tonic stimulatory effect of corticostriatal glutamatergic pathways on NMDA receptors within the rostral part of the CP is a prerequisite for the expression of the cataleptogenic action of haloperidol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.