Abstract
The tyrosine kinase Fyn has two regulatory tyrosine residues that when phosphorylated either activate (Tyr(420)) or inhibit (Tyr(531)) Fyn activity. Within the central nervous system, two protein tyrosine phosphatases (PTPs) target these regulatory tyrosines in Fyn. PTPα dephosphorylates Tyr(531) and activates Fyn, while STEP (STriatal-Enriched protein tyrosine Phosphatase) dephosphorylates Tyr(420) and inactivates Fyn. Thus, PTPα and STEP have opposing functions in the regulation of Fyn; however, whether there is cross talk between these two PTPs remains unclear. Here, we used molecular techniques in primary neuronal cultures and in vivo to demonstrate that STEP negatively regulates PTPα by directly dephosphorylating PTPα at its regulatory Tyr(789). Dephosphorylation of Tyr(789) prevents the translocation of PTPα to synaptic membranes, blocking its ability to interact with and activate Fyn. Genetic or pharmacologic reduction in STEP61 activity increased the phosphorylation of PTPα at Tyr(789), as well as increased translocation of PTPα to synaptic membranes. Activation of PTPα and Fyn and trafficking of GluN2B to synaptic membranes are necessary for ethanol (EtOH) intake behaviors in rodents. We tested the functional significance of STEP61 in this signaling pathway by EtOH administration to primary cultures as well as in vivo, and demonstrated that the inactivation of STEP61 by EtOH leads to the activation of PTPα, its translocation to synaptic membranes, and the activation of Fyn. These findings indicate a novel mechanism by which STEP61 regulates PTPα and suggest that STEP and PTPα coordinate the regulation of Fyn. STEP61 , PTPα, Fyn, and NMDA receptor (NMDAR) have been implicated in ethanol intake behaviors in the dorsomedial striatum (DMS) in rodents. Here, we report that PTPα is a novel substrate for STEP61. Upon ethanol exposure, STEP61 is phosphorylated and inactivated by protein kinase A (PKA) signaling in the DMS. As a result of STEP61 inhibition, there is an increase in the phosphorylation of PTPα, which translocates to lipid rafts and activates Fyn and subsequent NMDAR signaling. The results demonstrate a synergistic regulation of Fyn-NMDAR signaling by STEP61 and PTPα, which may contribute to the regulation of ethanol-related behaviors. NMDA, N-methyl-D-aspartate; PTPα, receptor-type protein tyrosine phosphatase alpha; STEP, STriatal-Enriched protein tyrosine Phosphatase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.