Abstract

Parkinson's disease (PD) is one of the most common progressive neurodegenerative disorders, characterized by resting tremor, rigidity, bradykinesia, and postural instability. These symptoms are associated with massive loss of tyrosine hydroxylase-positive neurons in the substantia nigra (SN) causing an estimated 70-80% depletion of dopamine (DA) in the striatum, where their projections are located. Although the etiology of PD is unknown, mitochondrial dysfunctions have been associated with the disease pathophysiology. We used a mouse model expressing a mitochondria-targeted restriction enzyme, PstI or mito-PstI, to damage mitochondrial DNA (mtDNA) in dopaminergic neurons. The expression of mito-PstI induces double-strand breaks in the mtDNA, leading to an oxidative phosphorylation deficiency, mostly due to mtDNA depletion. Taking advantage of a dopamine transporter (DAT) promoter-driven tetracycline transactivator protein (tTA), we expressed mito-PstI exclusively in dopaminergic neurons, creating a novel PD transgenic mouse model (PD-mito-PstI mouse). These mice recapitulate most of the major features of PD: they have a motor phenotype that is reversible with l-DOPA treatment, a progressive neurodegeneration of the SN dopaminergic population, and striatal DA depletion. Our results also showed that behavioral phenotypes in PD-mito-PstI mice were associated with striatal dysfunctions preceding SN loss of tyrosine hydroxylase-positive neurons and that other neurotransmitter systems [noradrenaline (NE) and serotonin (5-HT)] were increased after the disruption of DA neurons, potentially as a compensatory mechanism. This transgenic mouse model provides a novel model to study the role of mitochondrial defects in the axonal projections of the striatum in the pathophysiology of PD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.