Abstract

The posterior dorsomedial striatum (pDMS) is necessary for goal-directed action; however, the role of the direct (dSPN) and indirect (iSPN) spiny projection neurons in the pDMS in such actions remains unclear. In this series of experiments, we examined the role of pDMS SPNs in goal-directed action in rats and found that whereas dSPNs were critical for goal-directed learning and for energizing the learned response, iSPNs were involved in updating that learning to support response flexibility. Instrumental training elevated expression of the plasticity marker Zif268 in dSPNs only, and chemogenetic suppression of dSPN activity during training prevented goal-directed learning. Unilateral optogenetic inhibition of dSPNs induced an ipsilateral response bias in goal-directed action performance. In contrast, although initial goal-directed learning was unaffected by iSPN manipulations, optogenetic inhibition of iSPNs, but not dSPNs, impaired the updating of this learning and attenuated response flexibility after changes in the action-outcome contingency.

Highlights

  • Animals adapt to changing environments and maximize opportunities for reward by flexibly adjusting their actions according to current goals

  • We first sought to establish whether plasticity-related activity differs in dSPNs and iSPNs during the acquisition of goal-directed action

  • We found a main effect of devaluation (Figure 4K; F(1,22)=37.57, p

Read more

Summary

Introduction

Animals adapt to changing environments and maximize opportunities for reward by flexibly adjusting their actions according to current goals. Studies investigating these output pathways have been almost entirely concerned with their modulation of spontaneous or previously acquired responses. These studies have found that bilateral manipulation of dSPNs versus iSPNs in the pDMS produces differential effects on spontaneous movement or on the flexible performance of reward-related actions

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call